Autor: Salvador García
ISBN-13: 9783319377315
Veröffentl: 10.09.2016
Einband: Previously published in hardcover
Seiten: 336
Gewicht: 509 g
Format: 235x155x18 mm
Sprache: Englisch

Data Preprocessing in Data Mining

 Previously published in hardcover
Sofort lieferbar | * inkl. MwSt ggf. zzgl. Versandkosten
Covers the set of techniques under the umbrella of data preprocessing in data mining and machine learning
Introduction.- Data Sets and Proper Statistical Analysis of Data Mining Techniques.- Data Preparation Basic Models.- Dealing with Missing Values.- Dealing with Noisy Data.- Data Reduction.- Feature Selection.- Instance Selection.- Discretization.- A Data Mining Software Package Including Data Preparation and Reduction: KEEL.
Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.
This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.

 

Rezensionen

Autor: Salvador García
ISBN-13:: 9783319377315
ISBN: 3319377310
Erscheinungsjahr: 10.09.2016
Verlag: Springer International Publishing
Gewicht: 509g
Seiten: 336
Sprache: Englisch
Auflage Softcover reprint of the original 1st ed. 2015
Sonstiges: Taschenbuch, 235x155x18 mm