• Coronavirus: Wir arbeiten weiter! Durch die schwierige Lage kann es auch bei uns zu Verzögerungen kommen. Wir hoffen auf Ihr Verständnis.

Progress in Inverse Spectral Theory

Progress in Inverse Spectral Theory
149,99 € *

inkl. MwSt. zzgl. Versandkosten

Sofort versandfertig, Lieferzeit ca. 1-3 Werktage

Erhältlich als:

Neuware
ISBN: 9783764357559
Autor: Stig I. Andersson
Einband/Bindung: Buch
Sprache: Englisch
Seitenzahl: 212
Erscheinungsjahr: 1997
Verlag: Springer Basel AG
  • 30 Tage Rückgaberecht
  • Günstige Preise
  • Versandkostenfrei ab 20€
Beschreibung
most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x,O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt,E ®E), locally given by 00 K(x,y; t) = L-IAk(~k ® 'Pk)(X,y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::- k. k=O Now, using, e. g. , the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.
Artikel-Nr.: 9783764357559
Weiterführende Links zu "Progress in Inverse Spectral Theory"
Kunden kauften auch
Kunden haben sich ebenfalls angesehen
Zuletzt angesehen